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COMPARATIVE CONVERGENCE ANALYSIS OF
NONLINEAR AMLI-CYCLE MULTIGRID

XIAOZHE HU, PANAYOT S. VASSILEVSKI, AND JINCHAO XU

Abstract. The main purpose of this paper is to provide a comprehensive convergence anal-

ysis of a nonlinear AMLI-cycle multigrid method for symmetric positive definite problems.

Based on classical assumptions for approximation and smoothing properties, we show that

nonlinear (symmetric and nonsymmetric) AMLI-cycle MG is uniformly convergent. Further-

more, under the only assumption that the smoother is convergent, we show that the nonlinear

AMLI-cycle is always better than the respective V-cycle MG. Finally, numerical experiments

are presented which illustrate the theoretical results.

1. Introduction

In this paper, we consider the following large-scale sparse linear system of equations

(1.1) Au = f,

where A is a symmetric positive definite (SPD) operator on a finite-dimensional vector space

V . Development of efficient and practical solvers for large sparse linear system of equations

arising from discretizations of partial differential equations (PDEs) is an important task in

scientific and engineering computing. We consider iterative solution of equation (1.1) by

multigrid (MG) methods. MG methods are efficient and often have optimal complexity.

There is extensive literature on MG methods; see [12, 26, 27, 5, 9, 22, 28, 25], and references

therein for details. MG methods are quite successful in practical applications nowadays. Due

to their efficiency and scalability, MG methods, especially their algebraic variants, algebraic

multigrid (AMG) methods, have become increasingly used in practice. AMG, originated in

[6], gained some popularity after [19] appeared, and more recently have been further extended

and developed in various directions ([23, 7, 10, 29, 8, 14], etc.).

In order to improve the robustness of (A)MG methods, we usually use them as precondi-

tioners in Krylov subspace iterative methods [20], such as the conjugate gradient (CG) method

in the case when A is SPD.
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The performance and efficiency of MG methods may degenerate when the physical and

geometric properties of the problems become more and more complicated. Generally speaking,

if the convergence factor of the two-grid method is too large, the fast convergence property of

the MG methods, which is expected to be independent of the levels, can not be guaranteed

with standard V- and even W-cycles. A multilevel cycle, which uses the best polynomial

approximation of degree n to define the coarse level solver, was originally introduced in [1, 2,

24] and applied to the hierarchical basis MG method. This cycle, which usually is referred to

as the algebraic multilevel iteration (AMLI) cycle, is designed to provide optimal condition

number, if the degree n of the polynomial is sufficiently large, under the assumption that the

V-cycle MG methods have bounded condition number that only depends on the difference

of levels. This assumption (on the bounded level length V-cycle convergence) is feasible for

certain second order elliptic PDEs without additional assumptions on PDE regularity.

More recently, thanks to the introduction of the nonlinear (variable-step/flexible) precon-

ditioning method and its analysis in [3] (see also [11, 17, 20], etc.), the nonlinear multilevel

preconditioners were proposed and their additive version was analyzed in [4]. Furthermore, in

[13], the multiplicative version was investigated. In these nonlinear multilevel preconditioners,

n steps of a preconditioned CG iterative method replaces the best polynomial approximation

and is performed to define the coarse level solvers. The condition number is optimal for

properly chosen n > 1. The same idea can be adopted to define the MG cycles and has been

introduced in [25]. The resulting nonlinear AMLI-cycle MG was analyzed in [18] (see also

[25]). In nonlinear AMLI-cycle MG, n steps of a CG method with MG on the coarser level as

a preconditioner is applied to define the coarse level solver. Under the assumption that the

convergence factor of the V-cycle MG with bounded-level difference is bounded, the uniform

convergence property of the nonlinear AMLI-cycle MG methods is shown, if n is chosen to be

sufficiently large.

As we can see, the parameter n plays an important rule in the linear and nonlinear AMLI-

cycle MG methods. It needs to be sufficiently large to guarantee the uniform convergence

even for the problems with full regularity according to the theoretical results. However,

one can expect the uniform convergence for these cases for any n ∈ Z+, especially n =

1, which partly motivated the present work. More specifically, we provide such uniform

convergence analysis of the nonlinear AMLI-cycle MG. Under the standard assumptions on

approximation and smoothing properties, we show that both nonsymmetric (without post-

smoothing) and symmetric (with both pre– and post-smoothing) nonlinear AMLI-cycle MG

converge uniformly for any n ≥ 1 in the following sense:

‖v − B̃ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,

‖v − B̃k[Akv]‖2Ak
≤ δ‖v‖2Ak

,
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where B̃ns
k and B̃k, defined by Algorithm 2.4 and 2.5 below, denote the nonsymmetric and

symmetric nonlinear AMLI-cycle MG methods respectively, and the constant 0 < δ < 1 is

independent of the level k. We also give an alternative proof of the uniform convergence

under the assumption used in [18], i.e. the boundedness of V-cycle MG with bounded-level

difference. In addition, we show that B̂ns
k [·] and B̂k[·], the preconditioners used in Krylov

subspace iterative methods to define B̃ns
k [·] and B̃k[·], are also uniformly convergent. This

means all the recursive calls of Krylov subspace iterative methods can be done only on the

coarse levels. On the finest level, we can only do the smoothing steps and still have a uniform

convergent method. On the other hand, without the approximation and smoothing properties,

similar to MG methods, we are not able to show the uniform convergence for nonlinear AMLI-

cycle MG. However, we can compare nonlinear AMLI-cycle MG with V-cycle MG methods,

and show that nonlinear AMLI-cycle MG is always better than the corresponding V-cycle

MG for any n ≥ 1. For nonsymmetric case, we can show that

‖v − B̃ns
k [Akv]‖Ak

≤ ‖v −Bns
k Akv‖Ak

,

where Bns
k denotes the nonsymmetric V-cycle MG (without post-smoothing), i.e. \-cycle. For

the symmetric case, under the assumption that the smoother is convergent in ‖ · ‖Ak
norm,

we have

‖v − B̃k[Akv]‖Ak
≤ ‖v −BkAkv‖Ak

,

where Bk denotes the V-cycle MG. The above inequality is based on an important property

of the full version of nonlinear preconditioned conjugate gradient (PCG) method, namely, the

residual of the current iteration is orthogonal to all previous search directions. This property

fails for the truncated version of nonlinear PCG method. Therefore, the full version nonlinear

PCG should be used rather than the steepest descent method or any truncated version of the

nonlinear PCG to define the coarse level solver in the nonlinear AMLI-cycle MG.

The rest of the paper is organized as follows. In section 2, we introduce the nonlinear AMLI-

cycle MG algorithms and the basic assumptions. The main results, uniform convergence and

comparison theorem of nonlinear AMLI-cycle MG are presented in section 3. In section 4,

numerical experiments and the results that illustrate our theoretical results are presented.

2. Preliminaries

Let V be a linear vector space. (·, ·) denotes a given inner product on V ; its induced norm

is ‖·‖. The adjoint of A with respect to (·, ·), denoted by At, is defined by (Au, v) = (u,Atv) for

all u, v ∈ V . A is SPD if At = A and (Av, v) > 0 for all v ∈ V \{0}. Since A is SPD with

respect to (·, ·), (A·, ·) defines another inner product on V , denoted by (·, ·)A, and its induced

norm is ‖ · ‖A.
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2.1. Multigrid. Let us first introduce the standard V-cycle MG method. Here, we consider

the MG methods which are based on a nested sequence of subspaces of V :

(2.1) V1 ⊂ V2 ⊂ · · · ⊂ VJ = V.

Corresponding to these spaces, we define Qk, Pk : V → Vk as the orthogonal projections with

respect to (·, ·) and (·, ·)A respectively, and define Ak : Vk → Vk by (Akuk, vk) = (uk, vk)A
for uk, vk ∈ Vk. Note that Ak is also SPD, and therefore defines a inner product on Vk,

denoted by (·, ·)Ak
, and its induced norm is ‖ · ‖Ak

. We also need to introduce a smoother

operator Rk : Vk → Vk in order to define the multigrid method.

Now we define the nonsymmetric multigrid iterator Bns
k (without post-smoothing) by the

following recursive algorithm:

Algorithm 2.1 \-cycle MG: Bns
k

Let Bns
1 = A−1

1 and assume that Bns
k−1 : Vk−1 → Vk−1 has been defined, then for f ∈ Vk,

Bns
k : Vk → Vk is defined as follow:

Pre-smoothing: u1 = Rkf ;

Coarse grid correction: Bns
k f := u1 +Bns

k−1Qk−1(f −Aku1).

Similarly, we can also define the (symmetric) V-cycle multigrid operator Bk recursively:

Algorithm 2.2 V-cycle MG: Bk

Let B1 = A−1
1 and assume that Bk−1 : Vk−1 → Vk−1 has been defined, then for f ∈ Vk,

Bk : Vk → Vk is defined as follow:

Pre-smoothing u1 = Rkf ;

Coarse grid correction u2 = u1 +Bk−1Qk−1(f −Aku1);

Post-smoothing Bkf := u2 +Rtk(f −Aku2).

2.2. Nonlinear Preconditioned Conjugate Gradient Method. In order to introduce

nonlinear AMLI-cycle, we also need to introduce the nonlinear PCG Method, which is a sim-

plified version (available for s.p.d. Ak) of the algorithm originated in [3]. The original version

in [3] was meant for more general cases including nonsymmetric and possibly indefinite ma-

trices. Let B̂k[·] : Vk → Vk be a given nonlinear operator that is intended to approximate

the inverse of Ak. We now formulate the nonlinear PCG method that can be used to provide

iterated approximate inverse to Ak based on the given nonlinear operator B̂k[·]. This proce-

dure gives another nonlinear operator B̃k[·] : Vk → Vk, which can be viewed as an improved

approximation to the inverse of Ak.
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Algorithm 2.3 Nonlinear PCG Method

Assume we are given a nonlinear operator B̂k[·] to be used as a preconditioner. Then,

for ∀f ∈ Vk, B̃k[f ] is defined as follows:

Step 1. Let u0 = 0 and r0 = f . Compute p0 = B̂k[r0]. Then let

u1 = α0p0, and r1 = r0 − α0Akp0, where α0 =
(r0, p0)

(p0, p0)Ak

.

Step 2. For i = 1, 2, · · · , n− 1, compute the next conjugate direction

(2.2) pi = B̂k[ri] +
i−1∑
j=0

βi,jpj , where βi,j = −(B̂k[ri], pj)Ak

(pj , pj)Ak

.

Then next iterate is

(2.3) ui+1 = ui + αipi, where αi =
(ri, pi)

(pi, pi)Ak

,

and the corresponding residual is

(2.4) ri+1 = ri − αiAkpi.

Step 3. Let B̃k[f ] := un.

Remark 2.1. If we only apply one step of nonlinear PCG method, we can see that

(2.5) B̃k[f ] = αB̂k[f ], where α =
(B̂k[f ], f)
‖B̂k[f ]‖2Ak

.

That is, B̃k[f ] differs from B̂k[f ] by a scalar factor.

Remark 2.2. Due to the choice of βi,j , it is easy to see that the new direction pi is orthogonal

to all the previous directions pj , j = 0, 1, · · · , i− 1, namely

(2.6) (pi, pj)Ak
= 0, j = 0, 1, 2, · · · , i− 1.

Due to this property of the directions pi and the choice of αi, from (2.4), it is straightforward

to see that

(2.7) (ri+1, pj) = 0, j = 0, 1, 2, · · · , i.

Finally, by (2.6) and (2.7) , we can show that ui+1 computed by (2.3) is the solution of the

following minimization problem

min
αi,j∈R

‖f −Ak(ui +
i∑

j=0

αi,jpj)‖2A−1
k

.

Therefore, we have

‖f −Akui+1‖2A−1
k

≤ ‖f −Akui‖2A−1
k

,
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then by induction, we have

(2.8) ‖A−1
k f − B̃k[f ]‖2Ak

≤ ‖A−1
k f − B̂k[f ]‖2Ak

.

This means, that B̃k[·] is a better approximation to A−1
k than B̂k[·].

Remark 2.3. According to equation (2.2), we use all previous search directions to compute

the next one. The resulting Algorithm 2.3 is referred to as the full version of nonlinear PCG

method. In practice, due to the memory constraints, we may want to use a truncated version;

namely, we only require that the new direction be orthogonal to the mi ≥ 0 most recent ones

(cf. [17]). In that case, equation (2.2) is replaced by

(2.9) pi = B̂k[ri] +
i−1∑

j=i−1−mi

βi,jpj , where βi,j = −(B̂k[ri], pj)Ak

(pj , pj)Ak

,

and the resulting algorithm is called the truncated version of nonlinear PCG method. A

general strategy is to have 0 ≤ mi ≤ mi−1 + 1 ≤ i − 1 and a typical choice is mi = 0. If

pi = B̂k[ri] (i.e., formally mi = −1) this choice corresponds to the nonlinear preconditioned

steepest descent method. In the present multilevel setting the full version of the method

is practically acceptable, since we expect to have relatively few recursive calls (between the

levels) and this happens on coarse levels.

If B̂k[·] approximates the inverse of Ak, with accuracy δ ∈ [0, 1), that is,

(2.10) ‖A−1
k f − B̂k[f ]‖Ak

≤ δ‖f‖A−1
k
.

We will later use the following convergence results of the nonlinear PCG methods.

Theorem 2.1 (Theorem 10.2, [25]). Assume that B̂k[·] satisfies (2.10), and B̃k[·] is imple-

mented by n iterations of Algorithm 2.3 with B̂k[·] as the preconditioner, then the following

convergence rate estimate holds,

(2.11) ‖A−1
k f − B̃k[f ]‖Ak

≤ δn‖f‖A−1
k
.

Remark 2.4. As stated by Theorem 10.2 in [25], the above convergence rate estimate holds

for both full and truncated version of the nonlinear PCG methods.

2.3. Nonlinear AMLI-cycle MG. Now, thanks to Algorithm 2.3, we can recursively con-

struct the nonlinear AMLI-cycle MG operator as an approximation of A−1
k . First, we define

a nonsymmetric one, i.e. a nonlinear AMLI-cycle MG without post-smoothing.

Similarly to standard (linear) MG, we can also define a symmetric nonlinear AMLI-cycle

multigrid by introducing post-smoothing. We have,
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Algorithm 2.4 Nonsymmetric nonlinear AMLI-cycle MG: B̂ns
k [·]

Assume B̂ns
1 [f ] = A−1

1 f , and B̂ns
k−1[·] has been defined, then for f ∈ Vk

Pre-smoothing: u1 = Rkf ;

Coarse grid correction: B̂ns
k [f ] := u1 + B̃ns

k−1[Qk−1(f − Aku1)], where B̃ns
k−1 is

implemented as in Algorithm 2.3 with B̂ns
k−1 as preconditioner.

Algorithm 2.5 Nonlinear AMLI-cycle MG: B̂k[·]

Assume B̂1[f ] = A−1
1 f , and B̂k−1[·] has been defined, then for f ∈ Vk

Pre-smoothing u1 = Rkf ;

Coarse grid correction u2 = u1+B̃k−1[Qk−1(f−Aku1)], where B̃k−1 is implemented

as in Algorithm 2.3 with B̂k−1 as preconditioner;

Post-smoothing B̂k[f ] := u2 +Rtk(f −Aku2).

2.4. Assumptions. Our goal is to analyze the convergence of the nonlinear AMLI-cycle MG

using the same assumptions as in the conventional (classical) convergence analysis of MG.

We make the following (classical) assumptions in order to carry out the convergence anal-

ysis. These assumptions will be used to show the uniform convergence of the nonlinear

AMLI-cycle. The first assumption is the so-called approximation property of the projection

Pk.

Assumption 2.1 (Approximation Property).

(2.12) ‖(I − Pk−1)v‖2Ak
≤ c1
ρ(Ak)

‖Akv‖2, ∀v ∈ Vk,

where ρ(Ak) is the spectral radius of Ak, and c1 is a constant independent of k.

This assumption is commonly used in the MG literature, for example, Assumption A.7 in

[5], “strong approximation property” assumption in [25], and Assumption (A7.1) in [26]. The

above assumption holds (see, e.g., [26, 25]) in the case of second order elliptic problems with

full regularity.

A next common assumption is on the smoothers. In this paper, we always assume that the

(nonsymmetric, in general) smoother Rk, is convergent in the ‖ · ‖Ak
norm.

Our second main assumption is that the symmetric composite smoother R̃k, defined by

I − R̃kAk = (I −RkAk)(I −RtkAk),

satisfies the following smoothing property.

Assumption 2.2 (Smoothing Property).

(2.13)
c2

ρ(Ak)
(v, v) ≤ (R̃kv, v), ∀v ∈ Vk,
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where c2 is a constant independent of k.

This assumption means that the choice of smoother must be comparable to a simple

Richardson smoother. It is used to prove estimates concerning V-cycle MG, see Assump-

tion A.4. in [5]. Note that, we also have another symmetric composite smoother R̄k which is

defined by

I − R̄kAk = (I −RtkAk)(I −RkAk).

Based on the two Assumptions 2.1 and 2.2, we have the following (well-known) result (see

p. 75 of [26] and p. 145 of [25])

Lemma 2.2. Assume that Assumptions 2.1 and 2.2 hold, then we have

(2.14) ‖(I − Pk−1)v̂‖2Ak
≤ η(‖v‖2Ak

− ‖v̂‖2Ak
),

where v̂ = (I −RkAk)v, v ∈ V and η =
c1
c2
> 0 is a constant independent of k.

Remark 2.5. The above Lemma can be found as Assumption (A) in [25] and Lemma 6.2

in [26]. It provides perhaps the shortest convergence proof for the V-cycle MG. It is also

equivalent to the assumption originally used in [15, 16], see [25] for details. Inequality (2.12)

can also be found as inequality (4.82) in [21].

3. Convergence Analysis

In this section, we present the main results of this paper. Based on Assumptions 2.1 and 2.2,

we show that nonlinear AMLI-cycle MG is uniformly convergent without the requirement that

n, the number of iterations of the nonlinear PCG method, be sufficiently large. Furthermore,

without these assumptions, we can also compare nonlinear AMLI-cycle MG with V-cycle MG,

and show that the nonlinear AMLI-cycle MG is always better or not worse than the respective

V-cycle MG.

The following two representations are useful in our analysis. First, we have a result for the

nonsymmetric nonlinear operator B̂ns
k [·] defined in Algorithm 2.4.

Lemma 3.1. For all v ∈ Vk

(3.1) v − B̂ns
k [Akv] = (I −RkAk)v − B̃ns

k−1[Ak−1Pk−1(I −RkAk)v],

and

(3.2) B̂ns
k [v] = Rkv + B̃ns

k−1[Qk−1(I −AkRk)v].

Proof. Properties (3.1) and (3.2) follow directly from Algorithm 2.4 and the identityAk−1Pk−1 =

Qk−1Ak that holds on Vk. �
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Similarly, we have the following lemma concerning the (symmetric) nonlinear operator B̂k
defined in Algorithm 2.5,

Lemma 3.2. For all v ∈ Vk

(3.3) v − B̂k[Akv] = (I −RtkAk)((I −RkAk)v − B̃k−1[Ak−1Pk−1(I −RkAk)v]),

and

(3.4) B̂k[v] = R̄kv + (I −RtkAk)B̃k−1[Qk−1(I −AkRk)v].

Proof. Properties (3.3) and (3.4) are also seen directly from the definition in Algorithm 2.5

(using again the identity Ak−1Pk−1 = Qk−1Ak that holds on Vk). �

3.1. Uniform Convergence under Assumptions 2.1 and 2.2. Firstly, we prove the

uniform convergence of the nonsymmetric nonlinear AMLI-cycle MG method.

Theorem 3.3. Let B̂ns
k [·] be defined by Algorithm 2.4, and B̃ns

k [·] be implemented as in Al-

gorithm 2.3 with B̂ns
k [·] as preconditioner. Assume that Assumptions 2.1 and 2.2 hold, then

we have the following uniform estimates

‖v − B̂ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,(3.5)

‖v − B̃ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,(3.6)

where δ =
c1

c1 + c2
< 1, which is a constant independent of k.

Proof. We prove this by mathematical induction. Assume (3.5) and (3.6) hold for k − 1, and

let v̂ = (I −RkAk)v. By Lemma 3.1, we have

v − B̂ns
k [Akv] = v̂ − Pk−1v̂ + Pk−1v̂ − B̃ns

k−1[Ak−1Pk−1v̂].

Since Pk−1 is a projection, we have

‖v − B̂ns
k [Akv]‖2Ak

= ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ − B̃ns

k−1[Ak−1Pk−1v̂]‖2Ak

(Induction Assumption) ≤ ‖v̂ − Pk−1v̂‖2Ak
+ δ‖Pk−1v̂‖2Ak

(Orthogonality) = (1− δ)‖v̂ − Pk−1v̂‖2Ak
+ δ‖v̂‖2Ak

(Lemma 2.2) ≤ (1− δ)η(‖v‖2Ak
− ‖v̂‖2Ak

) + δ‖v̂‖2Ak

= (1− δ)η‖v‖2Ak
+ (δ − (1− δ)η)‖v̂‖2Ak

(Choose δ =
η

1 + η
=

c1
c1 + c2

) = δ‖v‖2Ak
.

(3.7)

Then (3.5) follows. Moreover, since B̃ns
k [Akv] is obtained by Algorithm 2.3 with B̂ns

k [·] as

preconditioner, by (2.8), we have

(3.8) ‖v − B̃ns
k [Akv]‖2Ak

≤ ‖v − B̂ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
.
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This completes the proof. �

In the next theorem we study the convergence of the symmetric nonlinear AMLI-cycle MG

under Assumptions 2.1 and 2.2.

Theorem 3.4. Let B̂k[·] be defined by Algorithm 2.5, and B̃ns
k [·] be implemented as in Algo-

rithm 2.3 with B̂k[·] as the preconditioner. Assume that Assumptions 2.1 and 2.2 hold, then

we have the following uniform estimates

‖v − B̂k[Akv]‖2Ak
≤ δ‖v‖2Ak

,(3.9)

‖v − B̃k[Akv]‖2Ak
≤ δ‖v‖2Ak

,(3.10)

where δ =
c1

c1 + c2
< 1 is a constant independent on k.

Proof. Assume that (3.9) and (3.10) hold for k−1. Denote (I−RkAk)v by v̂ as before. Then

by Lemma 3.2, we have

(v − B̂k[Akv], w)Ak
= (v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂ + Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂, ŵ)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂, ŵ − Pk−1ŵ)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], Pk−1ŵ)Ak

(Cauchy Schwarz) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ ‖Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖Ak
‖Pk−1ŵ‖Ak

(Induction Assumption) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ δ1/2‖Pk−1v̂‖Ak
‖Pk−1ŵ‖Ak

(Cauchy Schwarz) ≤
√
‖v̂ − Pk−1v̂‖2Ak

+ δ‖Pk−1v̂‖2Ak
×

√
‖ŵ − Pk−1ŵ‖2Ak

+ ‖Pk−1ŵ‖2Ak

For the first term, we can use the same argument in Theorem 3.4. The second term can

be estimated using the orthogonality of Pk−1 and the assumption that the smoother Rk is

Ak-convergent. Therefore, we have

(v − B̂k[Akv], w)Ak
≤ δ1/2‖v‖Ak

‖w‖Ak
, δ = η/(η + 1).

This shows that ‖v − B̂k[Akv]‖Ak
≤ δ1/2 ‖v‖Ak

with δ = η/(η + 1), and hence (3.9) follows

by mathematical induction.

Note that B̃k[Akv] is obtained by Algorithm 2.3 with B̂k[·] used as preconditioner, hence

by (2.8), we have

‖v − B̃k[Akv]‖2Ak
≤ ‖v − B̂k[Akv]‖2Ak

,

Then (3.10) follows directly. �
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In Theorem 3.3 and 3.4, the full version of the nonlinear PCG was (implicitly) assumed.

However, it is clear that since we only use the minimization property (2.8) in the proof, the

final result also holds for any truncated version of the nonlinear PCG. Therefore, we have the

following two corollaries regarding the uniform convergence of the nonlinear AMLI-cycle MG

using truncated versions of the nonlinear PCG.

Corollary 3.5. Let B̂ns
k [·] be defined by Algorithm 2.4, and B̃ns

k [·] be implemented in a

truncated version of Algorithm 2.3 with B̂ns
k [·] as preconditioner. Assume that Assump-

tions 2.1 and 2.2 hold, then we have the following uniform estimates

‖v − B̂ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,(3.11)

‖v − B̃ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,(3.12)

where δ =
c1

c1 + c2
< 1 is a constant independent on k.

Corollary 3.6. Let B̂k[·] be defined by Algorithm 2.5, and B̃ns
k [·] be implemented in a trun-

cated version of Algorithm 2.3 with B̂k[·] as preconditioner. Assume that Assumptions 2.1

and 2.2 hold, then we have the following uniform estimates

‖v − B̂k[Akv]‖2Ak
≤ δ‖v‖2Ak

,(3.13)

‖v − B̃k[Akv]‖2Ak
≤ δ‖v‖2Ak

,(3.14)

where δ =
c1

c1 + c2
< 1 is a constant independent on k.

Remark 3.1. In [18], uniform convergence of nonlinear AMLI-cycle MG is shown if the number

of nonlinear PCG iterations is chosen to be sufficiently large (under certain assumption on the

boundedness of the V-cycle MG with bounded-level difference). However, this condition is

not needed in the above theorems. Our uniform convergence results hold for arbitrary choice

of the number of nonlinear PCG iterations but requires instead Assumptions 2.1 and 2.2.

3.2. Convergence results without Assumptions 2.1 and 2.2. So far, the convergence re-

sults suggest that not only B̃k[·] but also B̂k[·] converge uniformly under Assumption 2.1 and 2.2.

A natural question arises, under the same assumption on the bounded convergence factor of

the V-cycle MG with bounded-level difference, k0, used in [18], does the nonlinear operator

B̂k[·] converge uniformly when n is sufficiently large? The following two theorems give a

positive answer to this question. This is a (slight) generalization of the result in [18].

For the sake of simplicity, let us assume that the convergence factor of two-grid method

(k0 = 1) is independent of k. The more general case, when the convergence factor of V-cycle

MG with bounded-level difference k0 is independent of k, can be analyzed similarly.
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Theorem 3.7. Let B̂ns
k [·] be defined by Algorithm 2.4, and B̃ns

k [·] be implemented as in Al-

gorithm 2.3 with B̂ns
k [·] as preconditioner. Assume that the convergence factor of two-grid

method is bounded by δ̄ ∈ [0, 1) which is independent of k, Let n, the number of iterations of

the nonlinear PCG method, be chosen such that the following inequality

(3.15) (1− δn)δ̄ + δn ≤ δ,

has a solution δ ∈ [0, 1). A sufficient condition for this is

(3.16) n >
1

1− δ̄
.

then we have the following uniform estimates

‖v − B̂ns
k [Akv]‖2Ak

≤ δ‖v‖2Ak
,(3.17)

‖v − B̃ns
k [Akv]‖2Ak

≤ δn‖v‖2Ak
,(3.18)

where δ is independent of k.

Proof. We prove the estimates by mathematical induction. Assume that (3.17) and (3.18) hold

for k − 1, and let v̂ = (I −RkAk)v. Similar to Theorem 3.3, we have

‖v − B̂ns
k [Akv]‖2Ak

= ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ − B̃ns

k−1[Ak−1Pk−1v̂]‖2Ak

(Induction Assumption) ≤ ‖v̂ − Pk−1v̂‖2Ak
+ δn‖Pk−1v̂‖2Ak

(orthogonality) = (1− δn)‖v̂ − Pk−1v̂‖2Ak
+ δn‖v̂‖2Ak

(two-grid convergence factor is bounded) ≤ ((1− δn)δ̄ + δn)‖v‖2Ak

(by (3.15)) ≤ δ‖v‖2Ak
.

This shows that estimate (3.17) holds. Moreover, According to Theorem 2.1, and letting

f = Akv in (2.11), the estimate (3.18) follows directly.

Now we show that (3.16) implies that there exists a δ which solves (3.15). (3.15) is equiv-

alently to

φ(δ) ≡ (1 + δ + δ2 + · · ·+ δn−1)δ̄ − (δ + δ2 + · · ·+ δn−1) ≤ 0.

Due to (3.16), φ(1) = nδ̄− (n− 1) = 1− n(1− δ̄) < 0, and φ(0) = δ̄ > 0. therefore, there is a

δ∗ ∈ [0, 1) such that φ(δ∗) = 0. Then any δ ∈ [δ∗, 1) will satisfy (3.15). �

Similar result also holds for symmetric case, see the following theorem.

Theorem 3.8. Let B̂k[·] be defined by Algorithm 2.5, and B̃k[·] be implemented as in Al-

gorithm 2.3 with B̂k[·] as preconditioner. Assume that the convergence factor of two-grid

method is bounded by δ̄ ∈ [0, 1) which is independent of k, Let n, the number of iterations of

the nonlinear PCG method, be chosen such that the following inequality

(1− δn)δ̄ + δn ≤ δ,



COMPARATIVE CONVERGENCE ANALYSIS OF NONLINEAR AMLI-CYCLE MG 13

has a solution δ ∈ [0, 1). A sufficient condition for this is

n >
1

1− δ̄
.

Then we have the following uniform estimates

‖v − B̂k[Akv]‖2Ak
≤ δ‖v‖2Ak

,(3.19)

‖v − B̃k[Akv]‖2Ak
≤ δn‖v‖2Ak

,(3.20)

where δ is independent of k.

Proof. Assume that (3.19) and (3.20) hold for k − 1. Similar to Theorem 3.4, we have

(v − B̂k[Akv], w)Ak
= (v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

(Cauchy Schwarz) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ ‖Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖Ak
‖Pk−1ŵ‖Ak

(Induction Assumption) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ δn/2‖Pk−1v̂‖Ak
‖Pk−1ŵ‖Ak

(Cauchy Schwarz) ≤
√
‖v̂ − Pk−1v̂‖2Ak

+ δn‖Pk−1v̂‖2Ak
×

√
‖ŵ − Pk−1ŵ‖2Ak

+ ‖Pk−1ŵ‖2Ak
.

The first term on the right hand side can be estimated by the same argument as in Theo-

rem 3.7, therefore, we have

(v − B̂k[Akv], w)Ak
≤ δ1/2‖v‖Ak

‖w‖Ak
,

this implies (3.19). Moreover, According to Theorem 2.1, and letting f = Akv in (2.11), the

estimate (3.20) follows directly.

The existence of δ has been shown in Theorem 3.7. �

For k0 = 1 and n = 2, the nonlinear AMLI-cycle MG has the complexity of W-cycle MG,

and the sufficient condition (3.16) becomes

2 = n >
1

1− δ̄
⇒ δ̄ <

1
2
.

In conclusion, we have the following result.

Corollary 3.9. If the two-grid method at any level k (with exact solution at coarse level k+1)

has a uniformly bounded convergence rate δ̄ <
1
2

, then the respective nonlinear AMLI-cycle

MG with n = 2 converges uniformly.

Remark 3.2. Since Theorem 2.1 holds for both full and truncated version of the nonlinear

PCG methods, the above uniform convergence estimates also hold for both full and truncated

version of the nonlinear PCG methods.
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3.3. Comparison Analysis. Without Assumptions 2.1 and 2.2, although we cannot show

that the nonlinear AMLI-cycle MG is uniformly convergent, we can compare it with the

nonlinear AMLI-cycle MG with the corresponding nonsymmetric (\-cycle) and symmetric

(V-cycle ) MG. In this section, we show that the nonlinear AMLI-cycle is always better (or

not worse) under the assumption that smoother is convergent in the ‖ · ‖Ak
-norm.

The first comparison theorem concerns with the nonsymmetric nonlinear AMLI-cycle MG

and \-cycle MG. It shows that both the nonlinear operator B̂ns
k and B̃ns

k give better approx-

imations to the inverse of Ak.

Theorem 3.10. Let Bns
k and B̂ns

k [·] be defined by Algorithm 2.1 and 2.4 , and B̃ns
k [·] be

implemented as in Algorithm 2.3 with B̂ns
k [·] used as preconditioner. Then we have

‖v − B̂ns
k [Akv]‖Ak

≤ ‖v −Bns
k Akv‖Ak

.(3.21)

‖v − B̃ns
k [Akv]‖Ak

≤ ‖v −Bns
k Akv‖Ak

.(3.22)

Proof. We use mathematical induction to prove the theorem. Assume that (3.21) and (3.22)

hold for k − 1. By Algorithm 2.1, we have

(3.23) (I −Bns
k Ak)v = v̂ −Bns

k−1Ak−1Pk−1v̂ = v̂ − Pk−1v̂ + Pk−1v̂ −Bns
k−1Ak−1Pk−1v̂,

where v̂ = (I −RkAk)v as before. Note that Pk−1 is a projection, hence we have

(3.24) ‖v −Bns
k Akv‖2Ak

= ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ −Bns

k−1Ak−1Pk−1v̂‖2Ak

Similarly, for the nonlinear operator B̂ns
k [·], by Lemma 3.1, we have

‖v − B̂ns
k [Akv]‖2Ak

= ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ − B̃ns

k−1[Ak−1Pk−1v̂]‖2Ak

≤ ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ −Bns

k−1Ak−1Pk−1v̂‖2Ak

= ‖v −Bns
k Akv‖2Ak

(3.25)

Then (3.21) follows. Moreover, since B̃ns
k [Akv] is obtained by Algorithm 2.3 with B̂ns

k [·] used

as preconditioner, by (2.8), we have

(3.26) ‖v − B̃ns
k [Akv]‖2Ak

≤ ‖v − B̂ns
k [Akv]‖2Ak

≤ ‖v −Bns
k Akv‖2Ak

.

This completes the proof. �

As before, we only used the minimization property (2.8) in the proof, therefore, Theo-

rem 3.10 is also true when we use any truncated version of the nonlinear PCG method to

define the coarse level solver. Thus, we have the following corollary.

Corollary 3.11. Let Bns
k and B̂ns

k [·] be defined by Algorithm 2.1 and 2.4. Let also B̃ns
k [·] be

implemented as in a truncated version of Algorithm 2.3 with B̂ns
k [·] as preconditioner. Then,
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we have

‖v − B̂ns
k [Akv]‖Ak

≤ ‖v −Bns
k Akv‖Ak

,

‖v − B̃ns
k [Akv]‖Ak

≤ ‖v −Bns
k Akv‖Ak

.

Next we show that, similarly to the nonsymmetric case, the nonlinear AMLI-cycle is better

(not worse) than the respective V-cycle MG, and both nonlinear operator B̂k and B̃k provide

better approximations to the inverse of Ak.

We first show the following key property of the nonlinear operator B̃k[·] obtained by Algo-

rithm 2.3. This property plays an important rule in our analysis.

Lemma 3.12. Let B̃k[·] be implemented as in Algorithm 2.3 with B̂k[·] as preconditioner.

For ∀v ∈ Vk, we have

(3.27) ‖v − B̃k[Akv]‖2Ak
= (v − B̃k[Akv], v)Ak

.

Proof. By (2.3), we can see that ui =
i−1∑
j=0

αjpj . Due to the fact that the residual ri is

orthogonal to all the previous directions pj , j = 0, 1, · · · , i − 1, we have (ri, ui) = 0. By

definition, B̃k[f ] := un, hence we have (rn, un) = 0, rn = f −AkB̃k[f ], i.e.,

(3.28) (f −AkB̃k[f ], B̃k[f ]) = 0.

Letting f = Akv, we have

‖v − B̃k[Akv]‖2Ak
= (v − B̃k[Akv], v − B̃k[Akv])Ak

= (v − B̃k[Akv], v)Ak
+ (v − B̃k[Akv], B̃k[Akv])Ak

.

The second term vanishes due to (3.28) and the choice f = Akv. Then (3.27) follows directly.

�

Now we are in a position to show the following comparison theorem for the nonlinear

AMLI-cycle MG and the respective V-cycle MG.

Theorem 3.13. Let B̂k[·] be defined by Algorithm 2.5, and B̃k[·] be implemented as in Algo-

rithm 2.3 with B̂k[·] as preconditioner. We also assume that the smoother Rk is convergent.

For ∀v ∈ Vk, the following estimates hold:

(3.29) 0 ≤ (v − B̃k[Akv], v)Ak
≤ (v − B̂k[Akv], v)Ak

≤ (v −BkAkv, v)Ak
.

Proof. Inequalities (3.29) hold trivially for k = 1. Assuming by induction that (3.29) holds

for k − 1, by Lemma 3.12, we than have that

(v − B̃k[Akv], v)Ak
= ‖v − B̃k[Akv]‖2Ak

≥ 0,
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which confirms the first inequality in (3.29). Since B̃k[Akv] is obtained by Algorithm 2.3 with B̂k[·] as

preconditioner, by (2.8), we have

(v − B̃k[Akv], v)Ak
= ‖v − B̃k[Akv]‖2Ak

≤ ‖v − B̂k[Akv]‖2Ak
.

On the other hand, letting v̂ = (I −RkAk)v, according to Lemma 3.2, we have

‖v − B̂k[Akv]‖2Ak
= ‖(I −RtkAk)(v̂ − B̃k−1[Ak−1Pk−1v̂])‖2Ak

(smoother is convergent) ≤ ‖v̂ − B̃k−1[Ak−1Pk−1v̂]‖2Ak

= ‖v̂ − Pk−1v̂ + Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖2Ak

(orthogonality) = ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖2Ak

= ‖v̂ − Pk−1v̂‖2Ak
+ ‖Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖2Ak−1

(Lemma 3.12) = (v̂ − Pk−1v̂, v̂ − Pk−1v̂)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], Pk−1v̂)Ak

(orthogonality) = (v̂ − Pk−1v̂, v̂)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], v̂)Ak

= (v̂ − B̃k−1[Ak−1Pk−1v̂], v̂)Ak

= (v − B̂k[Akv], v)Ak
.

Therefore, we have

(v − B̃k[Akv], v)Ak
≤ (v − B̂k[Akv], v)Ak

,

which confirms the second inequality in (3.29). For the last inequality, we have

(v − B̂k[Akv], v)Ak
= (v̂ − Pk−1v̂, v̂)Ak

+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], v̂)Ak

= (v̂ − Pk−1v̂, v̂)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], Pk−1v̂)Ak

(induction assumption) ≤ (v̂ − Pk−1v̂, v̂)Ak
+ (Pk−1v̂ −Bk−1Ak−1Pk−1v̂, Pk−1v̂)Ak

= (v̂ − Pk−1v̂, v̂)Ak
+ (Pk−1v̂ −Bk−1Ak−1Pk−1v̂, v̂)Ak

= (v̂ −Bk−1Ak−1Pk−1v̂, v̂)Ak

= (v −BkAkv, v)Ak
.

This confirms the last inequality in (3.29) and thus the proof is complete. �

Remark 3.3. We recall that Lemma 3.12 is based on the fact that the current residual ri is

orthogonal to all previous search direction, which only holds for the full version of the nonlinear

AMLI-cycle MG. Therefore, the full version of the nonlinear PCG should be preferred in

practice than the steepest descent method or truncated version of the nonlinear PCG, since

then we have guaranteed monotonicity as stated in Theorem 3.13 (which holds only if the full

version of the nonlinear PCG method is applied).
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3.4. Comparison results under Assumptions 2.1 and 2.2. We return now to the As-

sumption 2.1 and 2.2. Under these assumptions, we have the following comparison theorem

which shows that the nonlinear AMLI-cycle MG is (strictly) better than \-cycle MG with a

factor ρ < 1, which we specify in the following theorem.

Theorem 3.14. Let B̂k[·] be defined by Algorithm 2.5, and B̃k[·] be implemented as in Algo-

rithm 2.3 with B̂k[·] as a preconditioner. Assume that Assumption 2.1 and 2.2 hold. We then

have the estimates

‖v − B̂k[Akv]‖Ak
≤ ρ‖v −Bns

k Akv‖Ak
(3.30)

‖v − B̃k[Akv]‖Ak
≤ ρ‖v −Bns

k Akv‖Ak
,(3.31)

where ρ =
√

c1
c1 + c2

< 1 which is a constant independent of k.

Proof. Assume that (3.30) and (3.31) hold for k − 1. Denote (I − RkAk)v by v̂ as before.

Then by Lemma 3.2, we have

(v − B̂k[Akv], w)Ak
= (v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂ + Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂, ŵ)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], ŵ)Ak

= (v̂ − Pk−1v̂, ŵ − Pk−1ŵ)Ak
+ (Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂], Pk−1ŵ)Ak

(Cauchy Schwarz) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ ‖Pk−1v̂ − B̃k−1[Ak−1Pk−1v̂]‖Ak
‖Pk−1ŵ‖Ak

(induction assumption) ≤ ‖v̂ − Pk−1v̂‖Ak
‖ŵ − Pk−1ŵ‖Ak

+ ρ‖Pk−1v̂ − B̃ns
k−1Ak−1Pk−1v̂‖Ak

‖Pk−1ŵ‖Ak

(Cauchy Schwarz) ≤
√
‖v̂ − Pk−1v̂‖2Ak

+ ‖Pk−1v̂ −Bns
k−1Ak−1Pk−1v̂‖2Ak

×
√
‖ŵ − Pk−1ŵ‖2Ak

+ ρ2‖Pk−1ŵ‖2Ak

= ‖v −Bns
k Akv‖Ak

×
√
‖ŵ − Pk−1ŵ‖2Ak

+ ρ2‖Pk−1ŵ‖2Ak

Note that

‖ŵ − Pk−1ŵ‖2Ak
+ ρ2‖Pk−1ŵ‖2Ak

= (1− ρ2)‖ŵ − Pk−1ŵ‖2Ak
+ ρ2‖ŵ‖2Ak

(Lemma 2.2) ≤ (1− ρ2)η(‖w‖2Ak
− ‖ŵ‖2Ak

) + ρ2‖ŵ‖2Ak

= (1− ρ2)η‖w‖2Ak
+ (ρ2 − (1− ρ2)η)‖ŵ‖2Ak

= ρ2‖w‖2Ak
(choose ρ2 =

η

1 + η
).
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Therefore, we have

(v − B̂k[Akv], w)Ak
≤ ‖v −Bns

k Akv‖Ak
× ρ‖w‖Ak

,

which implies (3.30). Moreover, since B̃k[Akv] is obtained by Algorithm 2.3 with B̂k[·] as the

preconditioner, by (2.8), we have

‖v − B̃k[Akv]‖2Ak
≤ ‖v − B̂k[Akv]‖2Ak

.

Then (3.31) follows from the proven estimate (3.30). �

4. Numerical Experiments

In this section, we present some numerical results to illustrate our theoretical results. The

first model problem we consider here is

−∆u = f, in Ω,(4.1)

u = 0, on ∂Ω,(4.2)

where Ω is the unit square in R2. In our numerical experiments, we discretize equation (1.1) by

linear finite element method with the choice of f = 1. The domain Ω is triangulated by uniform

refinements and the mesh size on the finest level is h = 2−k, where k is the number of levels

used.

In Table 4.1, the numerical results of nonlinear AMLI-cycle MG and V-cycle MG methods

are presented and compared. Under the setting of our experiments, Assumption 2.1 and 2.2

are satisfied, then according to Theorem 3.4, both nonlinear operator B̂k[·] and B̃k[·] are

uniformly convergent, which is illustrated with the numerical results shown in Table 4.1.

Furthermore, we can see that B̂k and B̃k are better than Bk in terms of the number of

iterations, which agrees with Theorem 3.13.

The second model problem is a diffusion equation with large jump in the coefficient

−∇ · (a(x)∇u) = f, in Ω,(4.3)

u = 0, on ∂Ω,(4.4)

where Ω = (0, 1) × (0, 1). We have a(x) = 1 on Ω1 = (0.25, 0.5) × (0.25, 0.5) and Ω2 =

(0.5, 0.75) × (0.5, 0.75), and a(x) = 10−6 on Ω\(Ω̄1 ∪ Ω̄2). The domain Ω is triangulated by

uniform refinements and the mesh size on the finest level is h = 2−k, where k is the number of

levels used. In this test problem, we choose f = 0, which means the exact solution is u∗ = 0.

Since we know the exact solution, the stopping criteria is ||u∗ − ui||A ≤ 10−6, where ui is the

i-th iteration of the MG methods.

It is well known that the performance of V-cycle MG methods for this jump coefficient

problem will degenerate. Table 4.2 confirms this fact. For this problem, due to lack of

regularity, if one iteration of nonlinear PCG methods is used to define the coarse level solver,



COMPARATIVE CONVERGENCE ANALYSIS OF NONLINEAR AMLI-CYCLE MG 19

Table 4.1. Number of iterations of the V-cycle MG and nonlinear AMLI-

cycle MG. (stopping criteria: relative residual is less than 10−6; N-PCG(n): n

iterations of the nonlinear PCG is used to define the coarse level solver B̃k−1[·])

Bk B̂k[·] B̃k[·]

k N-PCG(1) N-PCG(2) N-PCG(1) N-PCG(2)

5 9 9 9 7 3

6 11 10 10 8 4

7 12 11 10 9 4

8 13 11 10 10 4

9 13 12 10 10 4

10 14 12 10 11 4

11 14 12 10 12 4

12 14 13 10 12 4

both B̂k[·] and B̃k[·] appear to be non–uniformly convergent. Nevertheless, according to

Theorem 3.13, they exhibit better convergence than the V-cycle MG. Furthermore, if the

number of iterations of the nonlinear PCG methods is sufficiently large (n = 2 in this case),

according to the theoretical results in [18], we can expect that B̃k[·] be uniformly convergent

both with respect to the number of levels k and the jumps, which is demonstrated by the

numerical results shown in Table 4.2. Furthermore, we see that B̂k[·] also converges uniformly.

Table 4.2. Number of iterations of the V-cycle MG and nonlinear AMLI-

cycle MG for jump coefficient problem. (stopping criteria: energy norm of

error is less than 10−6; N-PCG(n): n iterations of the nonlinear PCG is used

to define the coarse level solver B̃k−1[·])

Bk B̂k[·] B̃k[·]

k N-PCG(1) N-PCG(2) N-PCG(1) N-PCG(2)

5 27 15 13 13 4

6 40 22 14 15 5

7 49 29 14 20 5

8 56 37 15 30 5

9 76 45 15 42 5

10 102 55 15 47 5

In the last numerical experiment, we use unsmoothed aggregation AMG (UA-AMG) meth-

ods to solve model problem (4.1) discretized by linear finite element on uniform meshes. Given

the k-th level matrix Ak ∈ Rnk×nk , in the UA-AMG method we define prolongation matrix
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P kk−1 from a non-overlapping partition of the nk unknowns at level k into nk−1 nonempty

disjoint sets Gj , j = 1, . . . , nk−1, which are referred to as aggregates. In our numerical ex-

periments, we use Algorithm 2 in [23] to generate the aggregates on each level. Once the

aggregates are constructed, the prolongator P kk−1 is a nk × nk−1 matrix given by

(P kk−1)ij =

1 if i ∈ Gj
0 otherwise

i = 1, . . . , nk, j = 1, . . . , nk−1.

With such piecewise constant prolongation, the coarse level matrix Ak−1 ∈ Rnk−1×nk−1 is

defined by

Ak−1 = (P kk−1)tAk(P kk−1).

Since now we consider AMG methods, we do not have the orthogonal projections Qk and

Pk, and cannot use them to define the operators Bk, B̂k[·] and B̃k[·]. However, thanks to

the prolongation P kk−1, the V-cycle MG iterator Bk for UA-AMG is defined recursively by

Algorithm 2.2 with the following coarse grid correction step,

u2 = u1 + P kk−1Bk−1(P kk−1)t(f −Aku1).

Similarly, the nonlinear operator B̂k[·] for UA-AMG is defined by Algorithm 2.5 with the

following coarse grid correction step

u2 = u1 + P kk−1B̃k−1[(P kk−1)t(f −Aku1)],

and the nonlinear operator B̃k[·] for UA-AMG is implemented as in Algorithm 2.3 with B̂k[·]
for UA-AMG as preconditioner.

The results are shown in Table 4.3. We can see that if we use V-cycle MG for UA-AMG,

the number of iterations depends strongly on the size of the problem. If we use one iteration

of the nonlinear PCG to define the coarse level solver, the performance of B̂k[·] and B̃k[·] still

depends on the size of the problem, but the number of iterations grows much slower. If we

use two iterations, both B̂k[·] and B̃k[·] exhibit uniform convergence.

The last experiments demonstrate the potential of the nonlinear AMLI-cycle MG methods

in cases when the constructed hierarchy of interpolation matrices is not energy stable. In many

cases it is straightforward to come up with simple (e.g., block–diagonal) interpolation matrices

which however lead to V-cycle MG that generally has level–dependent convergence. The

nonlinear AMLI-cycle can be used in such instances to substantially improve the convergence

(cf., e.g., [14]).
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